
1/18

Fast identification of network protocol states with greybox
active automata learning

(Ongoing work)

PIPEREAU Yohan MICHEL Mathieu LEVILLAIN Olivier

Télécom SudParis

September 30, 2024

1/18

Introduction to protocol inference

2/18

Goal: Identify protocol deviation (security)

Multiple implementations and versions for a same standard

3/18

Automating protocol verification

Global picture

4/18

Model for implementation: Mealy Machines

OpenSSL 3.0.13 TLSv1.3 generated using pylstar-tls

5/18

Active Automata learning: MAT Framework

Minimally Adequate Teacher (MAT) answers
▶ Membership queries
▶ Equivalence queries

Figure: MAT framework c.f. Arthur Tran Van

6/18

Most of AAL time is spent in equivalence queries

Equivalence method: exhaustiveness vs duration
Guess parameter k: number of states, or length of separating sequence, . . .
▶ k too low → Miss states
▶ k too high → Loose time (O(|I |k))

Symbol complexity of L* with BDist EqMethod for BitVise state machine (MS3=7)

1
1An Experimental Evaluation of Conformance Testing Techniques in Active Automata

Learning, Bharat Garhewal et al., MODELS 2023

7/18

Problem statement

How to improve the average complexity of
equivalence queries ?

8/18

Principles of I/O equivalence method

▶ Input: An hypothesis Mealy machine, upper-bound on lookahead
▶ Goal: Finding a counter-example

1. Verification => State, Transition coverage
2. Discovery => Lookahead

▶ Conformance Testing 2: W, WP, HSI, . . .

Equivalence Method
Analogy of Noreneg in WolfSSL 4.8.0 for TLSv1.2

2Conformance Testing, Angelo Gargantini, LNCS 3472, 2005

9/18

Intuition

Memory for state separation
▶ Same memory → Same state
▶ Different memory → Maybe different states

Complexity to be exhaustive
▶ I/O : ∞
▶ Memory: O(V + E)

9/18

Oracle based on debug object graph classification

10/18

Object Graph properties

Definition - Object (Di)Graph G (V ,E)

▶ V : An object
▶ Virtual address
▶ Value
▶ Type

▶ E : A reference or a embedding
▶ Relationship: Contains, PointsTo
▶ Name

Object Graph Properties
▶ roots
▶ leaves
▶ may have cycles: dynamic datastructures : e.g. double linked lists
▶ often disconnected: disjoint subgraph starting from each root

11/18

Why debug object graph ?

Memory Snapshots Object Graphs Debug Object
Graphs

Object ID Virtual address Graph Path Graph Path
Object Nature Live & Dead Live Live
Object values ✓ ✓ ✓

Memory Topology ✗ ✓ ✓

Object Types ✗ ✗ ✓

Object Names ✗ ✗ ✓

12/18

How to build a Debug Object Graph ?

Roots
▶ CPU Registers
▶ Stack Frames variables
▶ Global variables

Dwarf Type Tree
▶ Container Types: Enum, Structure, Union
▶ Primitive Types: Basic Types, Array
▶ Type Aliases: Const Type, Typedef

13/18

When to snapshot ?

Snapshot Point

Snapshot point
On each FSM state, the server is either:
▶ waiting for the creation of a new connection: accept()
▶ waiting for a message: recv(), read(), . . .
▶ crashed

14/18

Our contribution: DwarfGC

DwarfGC: Build an Object Graph with debug symbol
▶ Shared library
▶ C lang
▶ 3244 LOC

Vertex # Edges
OpenSSL 1.0.1g [5282; 6387] [5947; 7097]
WolfSSL 4.8.0 [343; 374] [397; 432]

Number of Vertex and relationship

15/18

Can we infer the same machine as in blackbox AAL ? without debug
symbols ?

Gs1 = Gs2 ? Gs1 ≈ Gs2 !

Comparison Difficulty
Topological comparison isomorphism Multiple connections

Gs1 ∼= Gs2

Value comparison Value equality Random objects,
Vs1 = Vs2 Uninitialized objects

Method 1: Graph Kernels and Classification
▶ k : G × G → R
▶ Problem: Common denominator object graph

Method 2: Learning Graph transformations (Ongoing)
▶ Associate (State, Input Symbol) with a set of graph transformations
▶ Hidden Markov Chain ?

16/18

Same states
- TLS12ClientHelloRSA
- TLS12ClientHelloRSA, TLSApplicationDataEmpty

17/18

Different logical state
- TLS12ClientHelloRSA, TLSApplicationDataEmpty, TLSApplicationDataEmpty
- TLSApplicationDataEmpty

18/18

Conclusion

Goal
▶ Step 1 Can we infer the same machine as in blackbox AAL ? without

debug symbols ?
▶ Step 2 Can we infer states invisible in blacbox AAL ?

Contribution
DwarfGC: an object graph tracer using debug symbols

Future work
Gs1 ≈ Gs2

Advertisement
https://github.com/stanp-org/

0/5

Appendix

1/5

Idea - Greybox Equivalence

Stack size of a • b and c • d are different
1. Longer sep-sequence: ∃k > bdist, ∃w ∈ I k , (c • d) • w ̸= (a • b) • w

2. Unknown isym: ∃i /∈ I , ∃prefix ∈ I k , (c • d) • (prefix • i) ̸= (a • b) • (prefix • i)

3. Unknown osym: o ∈ O, ∃(o1, o2) /∈ O, o → (o1, o2)

4. Internal state: CFG node uncaptured by input and output

2/5

WolfSSL Happy Path with callstack oracle

WolfSSL v4.8.0 TLSv1.2 with stack size on states

3/5

OpenSSL Happy Path with callstack oracle

OpenSSL 1.0.1g TLSv1.2 with stack size on states

4/5

Key properties used to implement I/O Eq Method

Definition
Kleene Closure of I I ∗ = ϵ, a, b, aa, bb, ab, ba, ...

s1 I/O equivalent s2 s1 I/O separated from s2

s1 ≡ s2 w ∼ s1#s2
∀w ∈ I∗,Output(s1,w) = Output(s2,w) ∃w ∈ I∗,Output(s1,w) ̸= Output(s2,w)

5/5

Memory interface

Definition - Memory equivalent states
Two states s1, s2 ∈ S are memory equivalent iff for each state-defining
variables of the program the value in the memory snapshot at state s1 is equal
to the value in the memory snapshot at state s2

Definition - state-defining object Smem(s1)

State-defining objects are the set of objects which uniquely characterize a FSM
state.

Building an accurate oracle for equivalence query <=> Finding the complete
list of objects which can characterize a state uniquely

	Introduction to protocol inference
	Oracle based on debug object graph classification
	Appendix
	Appendix

