
Jeisson Vergara-Vargas, Salah Sadou, Chouki Tibermacine, Felipe Restrepo-Calle

Journée commune au GDR RSD, GPL (GT GLSEC) et SI (GT SSLR) sur la sécurité des piles réseau

Verification of Software Architecture Security
Properties using a Knowledge Graph

Orléans, France
September 30, 2024

©

2

Motivation

Problem Statement

• For efficiency and cost reasons it is important to ensure (validate) software’s properties at
the earlier stages of the development life cycle. (Tuma et al., MODELS’20)

• Security as a software property needs also to be addressed at design stage by the
architect. However, they do not have the efficient means for that. (Mallouli, ICSTW’22)

• A Secure by Design problem. (Dan Bergh Johnsson et al., 2019)

Verification of Software Architecture Security Properties using a Knowledge Graph

3

Motivation

Research Question

Is it possible to check security properties from the software architecture description of a
software system?

Method for verifying security properties at the software
architectural level, using a knowledge graph.

⟹

Verification of Software Architecture Security Properties using a Knowledge Graph

4

querying

input

Architecture Description Knowledge Graph

outputinput Vulnerabilities

Architectural
Elements

Security
property
to check

• Confidentiality
• Integrity
• Availability

General Approach for Sarch-Checks

⟹ Weaknesses ⟹Checking
Process

(Vergara-Vargas et al., ICSA’24)

Metamodel

Verification of Software Architecture Security Properties using a Knowledge Graph

4

Architecture Description: Metamodel

Verification of Software Architecture Security Properties using a Knowledge Graph

4

Architecture Description: Model

User Web Browser

FrontEnd Components

Back-End Components

Technical Components

Web App Mobile App

API Gateway

Microservices

Databases

Verification of Software Architecture Security Properties using a Knowledge Graph

Software architecture is the set of
structures needed to reason about a
software system. (CLEMENTS & BASS)

• It comprises software elements,
relations and properties.

• High level of abstraction.

4

Knowledge Graph: Sarch-Knows

There exist some
contributions in the

identification of
security aspects

related to the
architecture of

software systems.

There is no
contribution that

provides a
comprehensive

description between
security concepts and

architectural
concepts.

[Santos et al., ICSA’17]

However

Verification of Software Architecture Security Properties using a Knowledge Graph

4

Knowledge Graph: Sarch-Knows

Use of a knowledge graph with a query language.

E.g.

Observations:

• Architectural concepts are stable.
• Security concepts are evolving.

Needs:

• An evolutive representation containing both sets of concepts.
• Ability to check properties and to look for evidences..

⟹

Verification of Software Architecture Security Properties using a Knowledge Graph

4

Knowledge Graph: Sarch-Knows

Software Architecture Perspective

System
Structure

Software
System

Architecture

System
Property Security

Architectural
Element

Architectural
Tactic

Architectural
Tactic for
Security

Architectural
Pattern

Architectural
Pattern for
Security

DEFINES *

HAS

HAS * DEFINES *

SUPPORTS *

HAS *

DEFINES *

DEFINES *

IS

INCLUDES

SUPPORTS

SUPPORTS

INCLUDES
HAS *

(Vergara-Vargas et al., ECSA’23)

Consistency with
the Metamodel

Verification of Software Architecture Security Properties using a Knowledge Graph

4

Knowledge Graph: Sarch-Knows

Cybersecurity Perspective

Software
System

Vulnerability

Risk

Threat

Attack

Weakness

Counter-
measure

RELATED_TO

PREVENTS

REMEDIATES

EXPOSES

EXPLOITS

MITIGATES

LEADS_TO

RELATED_TO

(Vergara-Vargas et al., ECSA’23)

Verification of Software Architecture Security Properties using a Knowledge Graph

4

Knowledge Graph: Sarch-Knows

Abstract
Specific (SASE, CCSK)
Security Scenario (Bass et al., 2021)(Vergara-Vargas et al., ECSA’23)

• Components
• Connectors
• Arch. Tactics
• Arch. Patterns
• …

• Weaknesses
• Threats
• Risks
• Attacks
• Countermeasures
• …

Software Architecture Cybersecurity

Verification of Software Architecture Security Properties using a Knowledge Graph

4

Knowledge Graph: Sarch-Knows

e.g.
Connector

e.g.
HTTP

e.g.
Weakness

e.g. No secure
channel

Abstract
Specific (SASE, CCSK)
Security Scenario (Bass et al., 2021)(Vergara-Vargas et al., ECSA’23)

Software Architecture Cybersecurity

Verification of Software Architecture Security Properties using a Knowledge Graph

4

Knowledge Graph: Sarch-Knows

Cypher queries

Result graph

Element properties

A core (abstract) element corresponds to a fundamental concept of software architecture or cybersecurity.

Verification of Software Architecture Security Properties using a Knowledge Graph

4

Knowledge Graph: Sarch-Knows

Software Architecture
Specific Elements

(SASE)

Current Common
Security Knowledge

(CCSK)

(National Vulnerability Database
(NVD) of NIST)

(Common Weakness Enumeration
(CWE) by MITRE)

(Common Vulnerabilities and
Exposures (CVE) by MITRE)

(Architecture, Design and Threat
Modeling

(ASVS) by OWASP)

(Vergara-Vargas et al., ECSA’23)

Verification of Software Architecture Security Properties using a Knowledge Graph

4

querying

input

Architecture Description Knowledge Graph

outputinput Vulnerabilities

Architectural
Elements

Security
property
to check

• Confidentiality
• Integrity
• Availability

General Approach for Sarch-Checks

⟹ Weaknesses ⟹Checking
Process

(Vergara-Vargas et al., ICSA’24)

Metamodel

Verification of Software Architecture Security Properties using a Knowledge Graph

5

Checking Process

1. Identification of architectural elements

2. Identification of possible weaknesses

3. Analysis of the context of the architectural elements

4. Search of architectural tactics details

6. Reporting of checking results

5. Verification of presence of countermeasures

Verification of Software Architecture Security Properties using a Knowledge Graph

6

Elements to be analyzed:

• Component-and-Connector View

Checking Process

1. Identification of architectural elements

Component

Component

Connector

(Clements et al., 2010)

Verification of Software Architecture Security Properties using a Knowledge Graph

7

Search of possible weaknesses in the knowledge
graph, using the Cypher Language of Neo4j:

Checking Process

2. Identification of possible weaknesses

1. Identification of architectural elements

ap1 ap2

at2
at1

c1

a1

w1

w2

sp3 sp2

sp1

a2
c2

REST

Ø MATCH subgraph = (a:specific {KEY:
’REST’})- [:RELATIONSHIP*]-(b) RETURN
subgraph;

Verification of Software Architecture Security Properties using a Knowledge Graph

8

Identify the conditions in which the element is found in
the architecture:

• Interactions with other elements.
• Interaction characteristics.
• Internal properties.

Checking Process

1. Identification of architectural elements

3. Analysis of the context of the architectural elements

2. Identification of possible weaknesses

Element

Context

Verification of Software Architecture Security Properties using a Knowledge Graph

9

Search of the architectural tactics details in
the knowledge graph:

Checking Process

1. Identification of architectural elements

2. Identification of possible weaknesses

4. Search of architectural tactics details

3. Analysis of the context of the architectural elements Architectural Tactic

Architectural Pattern
(for Security)

- Countermeasure -

implementation

(Santos et al. ICSA’17)

(Zheng et al., SOSE’20)

Verification of Software Architecture Security Properties using a Knowledge Graph

10

Execution of an inspection process:

• For each architectural element.
• Is there evidence of the presence of the

related tactics?

Subgraphs comparison:

• Architectural element and its context.
• Architectural pattern implementation.

Checking Process

1. Identification of architectural elements

2. Identification of possible weaknesses

3. Analysis of the context of the architectural elements

5. Verification of presence of countermeasures

4. Search of architectural tactics details

Verification of Software Architecture Security Properties using a Knowledge Graph

11

Results:

• Non-equivalence: non-presence or
bad implementation of the pattern.
Suggestion of vulnerability.

• Equivalence: presence of pattern
(tactic). Suggestion of property
presence.

Checking Process

1. Identification of architectural elements

2. Identification of possible weaknesses

3. Analysis of the context of the architectural elements

4. Search of architectural tactics details

6. Reporting of checking results

5. Verification of presence of countermeasures

Verification of Software Architecture Security Properties using a Knowledge Graph

12

B: Preparation and Collection of Data

C: Data Analysis

Case Study

A: Design and Planning

Verification of Software Architecture Security Properties using a Knowledge Graph

13

A: Design and Planning

B: Preparation and Collection of Data

1. Identification and selection of a reported vulnerability.

2. Reverse engineering the software system to abstract the architecture.

3. Description of the software system architecture.

4. Execution of the checking process.

C: Data Analysis

RQ: Is it possible to check
security properties from the
architectural description of a

software system?

Case Study

(Wohlin et al., 2012)

1st Experiment

Verification of Software Architecture Security Properties using a Knowledge Graph

14

• Software System:
• Apache Airflow

• Reported Vulnerability:
• CVE-2020-13927

• CWE-287:
• Improper Authentication

airflow_mo

airflow_db

any_wb

airflow_http

Apache Airflow

any_httpcany_sh

airflow_restairflow_pc

airflow_rdbc

respond_to_request
server

client
send_request

provide_service
server

answer
answerer

caller
call

client
invoke_service

client
send_query

solve_query
server

sarch {
 architectural_views:
 component_and_connector_view ::
 elements {
 types -> ...
 attributes -> ...
 // Components: internal/external component type name (properties)
 int component database airflow_db (
 db_type relational
)
 int component monolith airflow_mo (
 programming_language python
)
 ext component shell any_sh
 ext component web_browser any_wb
 ext component http_client any_httpc
 // Connectors: connector type name (properties)
 connector rdbc airflow_rdbc
 connector pc airflow_pc
 connector http airflow_http (authorization: false)
 connector rest airflow_rest (authorization: false)
 }
 relations { // attachment: component.port, connector.role
 // airflow_db – airflow_mo
 attachment: airflow_db.server, airflow_rdbc.solve_query
 attachment: airflow_mo.client, airflow_rdbc.send_query
 // airflow_mo – any_sh
 attachment: airflow_mo.answerer, airflow_pc.answer
 attachment: any_sh.caller, airflow_pc.call
 // airflow_mo – any_wb
 attachment: airflow_mo.server, airflow_http.respond_to_request
 attachment: any_wb.client, airflow_http.send_request
 // airflow_mo – any_httpc
 attachment: airflow_mo.server, airflow_rest.provide_service
 attachment: any_httpc.client, airflow_rest.invoke_service
 }
 ::
 :
}

Case Study

A: Design and Planning

B: Preparation and Collection of Data

C: Data Analysis

Shell
Web

Front-End
HTTP
Client

Monolithic
Back-End

Database

RDBC

RESTHTTPPC

Apache Airflow

Architecture
Description

(Wohlin et al., 2012)

Verification of Software Architecture Security Properties using a Knowledge Graph

15

Architectural
Element

Architectural
Element Type

Weakness Security
Properties

Architectural
Tactic

Architectural
Pattern

Property presence
(suggestion)

HTTP Connector

CWE-287: Improper
Authentication

Confidentiality
Integrity Availability

Authenticate Actors Authenticator Yes

CWE-862: Missing
Authorization

Confidentiality
Integrity

Authorize Actors Authorization Yes

CWE-353: Missing Support
for Integrity Check

Integrity Verify Message Integrity Transport Layer Securiy Yes

CWE-354: Improper
Validation of Integrity Check

Value

Integrity Verify Message Integrity Transport Layer Securiy Yes

REST CWE-287: Improper
Authentication

Confidentiality
Integrity Availability

Authenticate Actors Authenticator No

CWE-862: Missing
Authorization

Confidentiality
Integrity

Authorize Actors Authorization No

CWE-353: Missing Support
for Integrity Check

Integrity Verify Message Integrity Transport Layer Securiy Yes

CWE-354: Improper
Validation of Integrity Check

Value

Integrity Verify Message Integrity Transport Layer Securiy Yes

Monolith Component

CWE-250: Execution with
Unnecessary Privileges

Confidentiality
Integrity Availability

Limit Access Secure
Three-Tier Architecture

Yes

Database CWE-250: Execution with
Unnecessary Privileges

Confidentiality
Integrity Availability

Limit Access Secure
Three-Tier Architecture

No

CVE vulnerability found by
Sarch-Checks.

Additional vulnerabilities
found by Sarch-Checks.

Case Study

A: Design and Planning

C: Data Analysis

B: Preparation and Collection of Data

(Wohlin et al., 2012)

Verification of Software Architecture Security Properties using a Knowledge Graph

16

Conclusions and Current Work

• The main contribution of this work is the use of an agile representation of the security knowledge to adapt
to its continuous evolution.

• The process is based on a validated knowledge on security at the architectural level, accessible to everyone
for verification.

Future Work

• Collect a large number of software architectures for validation.

• Refine elements and data in the knowledge graph.

Verification of Software Architecture Security Properties using a Knowledge Graph

