- i - . .
AMEDGS, Université

I
N
‘E\»%%.;L 9"\3” UNIVERSIDAD Bretagne Sud
15212 ())
"7 NACIONAL @ o) - I R I S
B 124 DE cOLOMBIA 4) A
o

Verification of Software Architecture Security
Properties using a Knowledge Graph

Jeisson Vergara-Vargas, Salah Sadou, Chouki Tibermacine, Felipe Restrepo-Calle

Journée commune au GDR RSD, GPL (GT GLSEC) et SI (GT SSLR) sur la sécurité des piles réseau

Orléans, France
September 30, 2024

©

e uversioan Ynversic (
o JO8s @ IRISA

Motivation

Problem Statement

7

* For efficiency and cost reasons it is important to ensure (validate) software’s properties at
the earlier stages of the development life cycle. (rumaetal, mopeLs:20

* Security as a software property needs also to be addressed at design stage by the
architect. However, they do not have the efficient means for that. watout, icstw22)

* A Secure by Design problem. oan sergh johnsson etal, 2019)

_

Verification of Software Architecture Security Properties using a Knowledge Graph

........... . Bt (
o UG @:IRISA

Motivation

Research Question

Is it possible to check security properties from the software architecture description of a
software system?

— Method for verifying security properties at the software
architectural level, using a knowledge graph.

Verification of Software Architecture Security Properties using a Knowledge Graph

Université

‘v UNIVERSIDAD Bretagne Sud
omdone UBe @:IRISA

General Approach for Sarch-Checks

Architecture Description Knowledge Graph
] Architectural
R Elements
i e input -
|
— Metamodel [
querying
. Conﬁdentiality R AP |
* Integrity : "
* Availability : Security S :
———+—>| property 8 : Weaknesses | =) | Vulnerabilities
input-— to check Process | output
| I
I
(Vergara-Vargas et al., ICSA’24) I\ _______________________________]

Verification of Software Architecture Security Properties using a Knowledge Graph

Université
Sud

/5 UNIVERSIDAD Bretagne (
L NACiGNAL ¢ &:IRISA

Architecture Description: Metamodel

E Architecture

[0..5] element [0..%] relation

Element

A

E Relation

[0..1] source

[0..1] target

B ure

3 secure : Boolean = false

[Technicalconnector

type : TechnicalConnectorType
= DBConnector

3 name : String

[Technicalcomponent [Backendicomponent [Frontendcomponent [Monolithiccomponent

]

type : TechnicalComponentType = 3 name : String
Database

3 name : String

type : BackEndComponentType = type :

MonolithicBackEnd 3 FrontEndComponentType =
© name : String Web

3 name : String

w (=1 (=1 3 name : String

TechnicalConnectorType

DBConnector
- FTP

= MQConnector

[0..1] api

[Attachment

-

> BackEndComponentType % FrontEndComponentType % TechnicalComponentType
= MonolithicBackEnd - Web Database
= Microservice = Mobile MessageQueue
- APIGateway = Desktop Storage [0..1] endpoint
E API E Endpoint
Cache
= type : APIType = REST = URL : String
3 name : String 3 doc : String
£ APIType > RESTVerb <> GraphQLVerb
= REST = POST QUERY
= GraphQL - GET MUTATION
= PUT
= DELETE

Verification of Software Architecture Security Properties using a Knowledge Graph

Université

 NACIONAL ¢ & IRISA
@ @ ®
Architecture Description: Model

-
. _____________ ' _________________ [7 ¢ a] FrontEnd Components |
User Web Browser i Web App Mobile App E
E AP| Gateway i
! Back-End Components :
Software architecture is the set of
structures needed to reason about a Microservices
software System. (CLEMENTS s BASS) ! i
* It comprises software elements, |
relations and properties. i) |
Prop ; Databases Technical Components i
* High level of abstraction. |

-

Verification of Software Architecture Security Properties using a Knowledge Graph

(& IRISA

Knowledge Graph: Sarch-Knows

There exist some
contributions in the
identification of
security aspects
related to the
architecture of
software systems.

However

[Santos et al., ICSA’17]

\

>

There is no
contribution that
provides a
comprehensive
description between
security concepts and
architectural
concepts.

Verification of Software Architecture Security Properties using a Knowledge Graph

UUUUUU

DDDDD

DDDDD

OOOOO BE: © IRISA

Knowledge Graph: Sarch-Knows

\§

Observations:

* Architectural concepts are stable.
e Security concepts are evolving.

Needs:

* An evolutive representation containing both sets of concepts.
* Ability to check properties and to look for evidences.

—> Use of a knowledge graph with a query language.

s «NE04|

Verification of Software Architecture Security Properties using a Knowledge Graph

Université
UNIVERSIDAD

Bretagne Sud
naov UDB: @:IRISA

Knowledge Graph: Sarch-Knows

Software Architecture Perspective

Architecture

*
DEFINES Architectural

Pattern

DEFINES *

HAS * DEFINES *

INCLUDES

HAS * DEFINES * Software
System

Architectural
Tactic

Architectural
Pattern for

Security

Consistency with
the Metamodel

Architectural
Element

SUPPORTS * INCLUDES

SUPPORTS

Architectural
Tactic for
Security

Security SUPPORTS

\(Vergara-Vargas et al., ECSA’23)

Verification of Software Architecture Security Properties using a Knowledge Graph

Université
UNIVERSIDAD Bretagne Sud

naov UDB: @:IRISA

Knowledge Graph: Sarch-Knows

Cybersecurity Perspective

RELATED TO Vulnerability

LEADS TO

REMEDIATES EXPLOITS

RELATED TO

MITIGATES

Counter-
measure

PREVENTS > Attack

\(Vergara-Vargas et al., ECSA’23)

Verification of Software Architecture Security Properties using a Knowledge Graph

Université

UUUUUU SIDAD M Bretagne Sud (
o UOS: @ IRISA

Knowledge Graph: Sarch-Knows

Software Architecture

* Components

* Connectors

* Arch. Tactics

* Arch. Patterns

K(Vergara-Vargas et al., ECSA’23)

Cybersecurity

@@ Abstract
OO Specific (SASE, CCSK)
— Security Scenario (Bassetal, 2021

Weaknesses
Threats

Risks

Attacks
Countermeasures

Verification of Software Architecture Security Properties using a Knowledge Graph

Université

UUUUUU SIDAD M Bretagne Sud (
o UOS: @ IRISA

Knowledge Graph: Sarch-Knows

-
Software Architecture Cybersecurity
e.g.
HTTP "~ e.g. No secure
- channel
e.g.
Connector
e.g.
@ @® Abstract Weakness
OO Specific (SASE, CCSK)
\(Vergara-Vargas et al., ECSA'23) — Secu”'ty Scenario (Bass et al., 2021)

Verification of Software Architecture Security Properties using a Knowledge Graph

5 Université
7° UNIVERSIDAD Bretagne Sud

S NACioNA : &:IRISA
Knowledge Graph: Sarch-Knows
4 o o a
. sw-arch-securit match (n:concept {category: 'Core Element'’ return (|n b S
Cypher queries y$ (pt { gory }) (n >
o Node properties © ?
Graph
concept
= @ AN
Table | <id> 4 @
.

A \ 1o category Core Element ©
Text ‘g ?32 5 name Attack ©

| % scenarios [1,2,3,4] ©
| - e i
Code .@ S \ h HEMED’ATES R ?

: |
5
(5408 @\
Result graph ° = @
Q
a Element properties
A core (abstract) element corresponds to a fundamental concept of software architecture or cybersecurity.

.

Verification of Software Architecture Security Properties using a Knowledge Graph

Université
Bretagne Sud

¢ &:IRISA
Knowledge Graph: Sarch-Knows
s
’ /nm..J ’ | \J' Di o o M.a;.g e
.. & Gy e (=) 7 Current Common
v iy Security Knowledge
Softwa.r(? Architecture ¢ - -t @\ e (CCSK)
Specific Elements L/
o) (couner.. - (National Vulnerability Database
(SASE) b o &) - & (NVD) of NIST)
< . .\ (Common Weakness Enumeration
22 @)-- (CWE) by MITRE)
@ S P (Common Vulnerabilities and
| @ Exposures (CVE) by MITRE)
(Architecture, Design and Threat
() Modeling
i (ASVS) by OWASP)
\(Vergara—Vargas et al., ECSA'23)

Verification of Software Architecture Security Properties using a Knowledge Graph

Université

‘v UNIVERSIDAD Bretagne Sud
omdone UBe @:IRISA

General Approach for Sarch-Checks

Architecture Description Knowledge Graph
] Architectural
R Elements
i S input -
|
— Metamodel [
querying
* Confidentiality fm e m e e — = -
* Integrity : :
* Availability : Security S :
— > property p— 5 8 : Weaknesses | =) | Vulnerabilities
put— to check S | output
| I
I
(Vergara-Vargas et al., ICSA’24) I\ ___________________]

Verification of Software Architecture Security Properties using a Knowledge Graph

Université
7 UNIVERSIDAD Bretagne Sud

owdon US: @:IRISA

Checking Process

1. Identification of architectural elements

y

2. Identification of possible weaknesses

y

3. Analysis of the context of the architectural elements

/

4. Search of architectural tactics details

y

5. Verification of presence of countermeasures

4

6. Reporting of checking results

Verification of Software Architecture Security Properties using a Knowledge Graph

s Université
7 UNIVERSIDAD Bretagne Sud

Comdoia UB: @ IRISA

Checking Process

1. Identification of architectural elements
Elements to be analyzed:

* Component-and-Connector View
(Clements et al., 2010)

Component

Connector

Component

Verification of Software Architecture Security Properties using a Knowledge Graph

26585 Université
W55 UNIVERSIDAD Bretagne Sud
% NACIONAL

L= DE COLOMBIA

(& IRISA

Checking Process

1. Identification of architectural elements

Search of possible weaknesses in the knowledge
graph, using the Cypher Language of Neo4j:

2. Identification of possible weaknesses

» MATCH subgraph = (a:specific {KEY:
"REST’ })- [:RELATIONSHIP*]-(b) RETURN

subgraph;
’
Exploiti
o atalanliy Incorrect.
ati...
\
¢ . // Integrity \
2 |z Implemet
7 =4 ‘Acce:
4 AN | -
s N
A Vi \/% \ B |
|
Confidenti-
ality -~

Authorizati...

L, /
SN " w/;qﬁ —
REST

Authentic-
a.
&
: cart™
o
: .

Verification of Software Architecture Security Properties using a Knowledge Graph

) Université
/)’ UNIVERSIDAD Bretagne Sud

Comdoia UB: @ IRISA

Checking Process

1. Identification of architectural elements
Identify the conditions in which the element is found in

the architecture:

Vv

2. Identification of possible weaknesses

* |nteractions with other elements.
* |nteraction characteristics.
* Internal properties.

3. Analysis of the context of the architectural elements

Context

Verification of Software Architecture Security Properties using a Knowledge Graph

Université

__’: UNIVERSIDAD Bretagne Sud
Comdoia UB: @ IRISA

Checking Process

1. Identification of architectural elements

Vv

2. Identification of possible weaknesses

\ 2

3. Analysis of the context of the architectural elements

4. Search of architectural tactics details

Search of the architectural tactics details in
the knowledge graph:

Architectural Tactic (Santosetal. ICSA'17)

implementation

\4
Architectural Pattern (zhengetal, SOSE'20)
(for Security)
- Countermeasure -

Verification of Software Architecture Security Properties using a Knowledge Graph

Université

‘v UNIVERSIDAD Bretagne Sud
omdone UBe @:IRISA

Checking Process

1. Identification of architectural elements

Vv

2. Identification of possible weaknesses

\ 2

3. Analysis of the context of the architectural elements

Vv

4. Search of architectural tactics details

5. Verification of presence of countermeasures

Execution of an inspection process:
* For each architectural element.
* Isthere evidence of the presence of the
related tactics?

Subgraphs comparison:

* Architectural element and its context.
* Architectural pattern implementation.

Verification of Software Architecture Security Properties using a Knowledge Graph

10

Université

'__ UNIVERSIDAD Bretagne Sud
Comdoia UB: @ IRISA

Checking Process

1. Identification of architectural elements

Results:

Vv

2. Identification of possible weaknesses o Non-equivalence: non-presence or
bad implementation of the pattern.
Suggestion of vulnerability.

\ 2

3. Analysis of the context of the architectural elements

¥ Equivalence: presence of pattern
4. Search of architectural tactics details (tactic). Suggestion of property
presence.
v

5. Verification of presence of countermeasures

6. Reporting of checking results

Verification of Software Architecture Security Properties using a Knowledge Graph 11

S Université
#° UNIVERSIDAD Bretagne Sud

f{‘ NACIONAL lgm: (‘) IRISA

A: Design and Planning

B: Preparation and Collection of Data

C: Data Analysis

Case Study

Verification of Software Architecture Security Properties using a Knowledge Graph

12

Université

'__ UNIVERSIDAD Bretagne Sud
Comdoia UB: @ IRISA

(Wohlin et al., 2012)

Case Study

A: Design and Planning

B: Preparation and Collection of Data

C: Data Analysis

RQ: Is it possible to check
security properties from the
architectural description of a

software system?

1st Experiment

Identification and selection of a reported vulnerability.
Reverse engineering the software system to abstract the architecture.
Description of the software system architecture.

Execution of the checking process.

Verification of Software Architecture Security Properties using a Knowledge Graph

13

Université
° UNIVERSIDAD Bretagne Sud

e Uds: & IRISA

(Wohlin et al., 2012)

A: Design and Planning

Preparation and Collection of Data

C: Data Analysis

* Software System:
* Apache Airflow

* Reported Vulnerability:
* (CVE-2020-13927

e CWE-287:
* Improper Authentication

Case Study

Web
Front-End

T

Monolithic
Back-End

Database

Apache Airflow

Architecture
Description

architectural_views:
component_and_connector_view ::
elements {

types = ...
attributes — ...
// Components: internal/external component type name (properties)
int component database airflow_db (
db_type relational
)
int component monolith airflow_mo (
programming_language python
)
ext component shell any_sh
ext component web_browser any_wb
ext component http_client any_httpc
// Connectors: connector type name (properties)
connector rdbc airflow_rdbc
connector pc airflow_pc
connector http airflow_http (authorization: false)
connector rest airflow_rest (authorization: false)

Verification of Software Architecture Security Properties using a Knowledge Graph

14

Université
Sud

> UNIVERSIDAD Bretagne

NACIONAL

) DE COLOMBIA

o IRISA

(Wohlin et al., 2012)

Case Study

>

Design and Planning

Preparation and Collection of Data

Data Analysis

CVE vulnerability found by

Sarch-Checks.

Additional vulnerabilities
found by Sarch-Checks.

Architectural | Architectural Weakness Security Architectural Architectural Property presence
Element Element Type Properties Tactic Pattern (suggestion)
HTTP Connector CWE-287: Improper Confidentiality Authenticate Actors Authenticator Yes
Authentication Integrity Availability
CWE-862: Missing Confidentiality Authorize Actors Authorization Yes
Authorization Integrity
CWE-353: Missing Support Integrity Verify Message Integrity Transport Layer Securiy Yes
for Integrity Check
CWE-354: Improper Integrity Verify Message Integrity Transport Layer Securiy Yes
Validation of Integrity Check
Value
REST CWE-287: Improper Confidentiality Authenticate Actors Authenticator
Authentication Integrity Availability
CWE-862: Missing Confidentiality Authorize Actors Authorization
Authorization Integrity
CWE-353: Missing Support Integrity Verify Message Integrity Transport Layer Securiy Yes
for Integrity Check
CWE-354: Improper Integrity Verify Message Integrity Transport Layer Securiy Yes
Validation of Integrity Check
Value
Monolith Component CWE-250: Execution with Confidentiality Limit Access Secure Yes
Unnecessary Privileges Integrity Availability Three-Tier Architecture
Database CWE-250: Execution with Confidentiality Limit Access Secure

Unnecessary Privileges

Integrity Availability

Three-Tier Architecture

Verification of Software Architecture Security Properties using a Knowledge Graph

15

A uvensions . it (
s 8s @©:IRISA

Conclusions and Current Work

* The main contribution of this work is the use of an agile representation of the security knowledge to adapt
to its continuous evolution.

* The process is based on a validated knowledge on security at the architectural level, accessible to everyone
for verification.

Future Work

e Collect a large number of software architectures for validation.

* Refine elements and data in the knowledge graph.

Verification of Software Architecture Security Properties using a Knowledge Graph 16

