Testing the reassembly consistency of IDS and OS in the presence of overlapping data

"Journée thématique" GDR RSD, GPL and SI, Orléans

Presenter: Lucas Aubard

Supervisors: Johan Mazel, Gilles Guette

Pierre Chifflier

Ph.D dates: 01/10/2022 - 30/09/2025

30/09/2024

Plan

1 Context

2 Threat model

3 Method

4 Results

Plan

1 Context

- 2 Threat model
- 3 Method

4 Results

Chunking mechanism in some Internet protocols

Generic networking problem

Application wants to send a lot of data and medium/underlying protocol is limited.

Solution

Chunk it

- Ethernet/IPv4||IPv6: fragmentation
- Ethernet/IP/TCP: segmentation

Chunking mechanism in some Internet protocols: examples

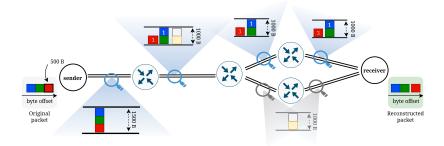


Figure 1: Normal chunk transmission

Chunking mechanism in some Internet protocols: examples

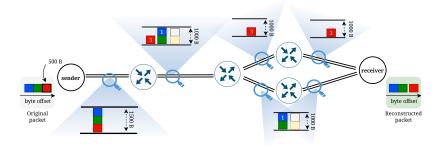


Figure 2: Chunk reordering

Chunking mechanism in some Internet protocols: examples

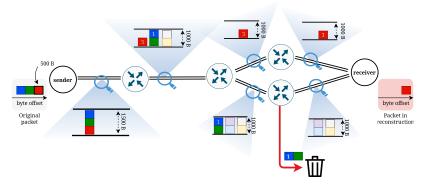


Figure 3: Chunk loss

Chunking mechanism in some Internet protocols: examples

Reassembly policies may change depending on OSes for IPv4¹, IPv6², TCP³ protocols and depending on QUIC implementations⁴

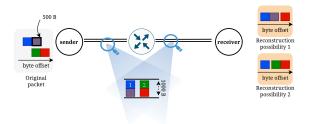
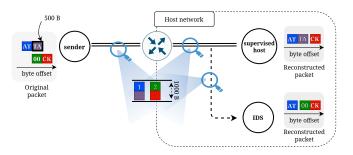


Figure 4: Chunk overlap

¹J. Novak. Target-based fragmentation reassembly. 2005, U. Shankar and V. Paxson. Active mapping: Resisting NIDS evasion withouts altering traffic. 2003.

²A. Atlasis. Attacking ipv6 implementation using fragmentation. 2012.


³ J. Novak and S. Sturges. Target-based tcp stream reassembly. 2007, U. Shankar and V. Paxson. Active mapping: Resisting NIDS evasion withouts altering traffic. 2003.

⁴G-S. Reen and C. Rossow. DPIFuzz: a differential fuzzing framework to detect DPI elusion strategies for QUIC. 2020.

Attacks targetting IDSes using chunking mechanism

Problem

Attacks targeting IDSes and exploiting data overlap exist⁵

Existing countermeasure

 manually configure an IDS to associate an IP address with a reassembly policy

⁵T. Ptacek and T. Newsham. Insertion, evasion, and denial of service: Eluding network intrusion detection. 1998.

Considered attack types

Attack type	Host	Target	Reassembled data	Attack scenario
	IDS		-	F1
Evasion	End host	×	"ATTACK"	□1
LVasion	IDS		"AT00CK"	 E2
	End host	×	"ATTACK"	LZ
	IDS	Х	"ATTACK"	
Insertion	End host		-	11
111261 (1011	IDS	Х	"ATTACK"	
	End host		"AT00CK"	12

Table 1: Attack type illustration. - means the implementation *ignores* the flow chunk data.

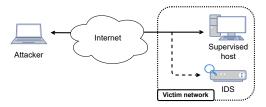
Related work limits

- Manual or semi-automatic (fuzzing, symbolic execution) methods are used to generate overlap test cases
 - RQ1. Are these methods exhaustive? If not, can we do better?
- It's been 10 years no work have specifically addressed OSes' IPv4 and TCP policy reassemblies
 - RQ2. Have the reassembly policies of recent OSes changed?
- Some IDSes allow one to configure the host reassembly policy RQ3. Do such IDSes reassemble consistently with OSes?

Plan

1 Context

2 Threat model


3 Method

4 Results

Threat model

Attacker needs to:

- identify victim host OS and IDS reassembly policies.
- craft IP header fields and payload (IP fragment-based attack).
- craft TCP header fields and payload (TCP segment-based attack).

Plan

1 Context

2 Threat model

3 Method

4 Results

Test case modeling

Relation <i>R</i>	Interpretation	Relation R inverse	
X M Y	meets		non-
X B Y Y	before	X Bi Y	relations
X Eq Y	equal	-	
X O YY	overlap		
X 5 Y	start	X Si Y	overlapping relations
X D Y	during	$\frac{Y}{X}$ X Di Y	
X F Y	finish	Y X Fi Y	

Table 2: Allen's interval algebra relations.

Test case modeling and related works

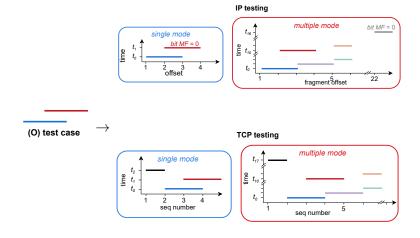

Relation R	Illustration
X Meets Y	
X Before Y	
X <i>Eq</i> ual Y	
X Overlaps Y	Y
X Starts Y	<u> </u>
X During Y	Y X
X Finishes Y	Y X

Table 3: Allen's interval algebra relations.

Author	Work	Year	Protocol	Tested Allen relations
Ptaceck et al.	[5]	1998	IPv4 /TCP	Fi, D
Shankar	[7]	2003	IPv4	O, Oi, Eq
et al.	[1]		TCP	O, D
Novak	[3]	2005	IPv4	O. Oi. S. Si. F.
et al.	[4]	2007	TCP	Fi, D, Di, Eq
Atlasis	[1]	2012	IPv6	O, Oi, S, Si, F, Fi, D, Di, Eq
Di Paolo et al.	[2]	2023	IPv6	O, Oi, Eq
Us	-	-	IPv4/IPv6/ TCP	O, Oi, S, Si, F, Fi, D, Di, Eq

Table 4: Summary regarding overlap-based works.

Test modes

Pyrolyse test pipeline

Easy to extend tool written in Rust that implements the following generic steps:

Plan

1 Context

2 Threat model

3 Method

4 Results

Results

OS reassembly policy evolution

	Protocol	Test case									
os		Testing			0	verlap	ping	relat	ion		
	version	mode	F	Fi	S	Si	0	Oi	D	Di	Eq
	IPv4	multiple	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
	IPv4	single	n	Ø	n	0	Ø	Ø	n	0	n
14/1 1 40	IPv6	multiple	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Windows 10	IPvb	single	n	Ø	n	0	Ø	Ø	n	0	n
	TCD	multiple	0	0	0	0	0	0	0	0	0
	TCP	single	0	0	0	0	0	0	0	0	0
	10.4	multiple	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
	IPv4	single	n	Ø	n	0	Ø	Ø	n	0	n
	IPv6	multiple	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Debian 12		single	n	Ø	n	0	Ø	Ø	n	0	n
	TCP	multiple	n	0	0	0	0	n	n	0	0
		single	n	0	n	0	0	n	n	0	0
	IPv4	multiple	n	0	0	0	0	0	n	0	0
	IPV4	single	n	Ø	n	0	0	0	n	0	n
SunOS 5.11	IPv6	multiple	n	0	0	0	0	0	n	0	0
SunOS 5.11	IPVO	single	n	Ø	n	0	0	0	n	0	n
	TCP	multiple	n	0	n	0	n	0	n	0	n
	TCP	single	n	0	n	0	n	0	n	0	0
	IPv4	multiple	n	0	0	0	0	n	n	0	0
FreeBSD 13.1/	IPV4	single	n	Ø	n	0	0	n	n	0	n
	IPv6	multiple	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
OpenBSD 7.4	IL/0	single	n	Ø	n	0	Ø	Ø	n	0	n
	TCP	multiple	n	0	0	0	0	n	n	0	0
	TCP	single	n	0	0	0	0	n	n	0	0

Results

Debian 12 reassembly policy evolution

	Test case										
Protocol	Testing		Overlapping relation								
	mode	F	Fi	5	Si	0	Oi	D	Di	Eq	
IPv4	multiple	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	
11 V4	single	n	Ø	n	0	Ø	Ø	n	0	n	
IPv6	multiple	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	
11 VO	single	n	Ø	n	0	Ø	Ø	n	0	n	
TCP	multiple	n	0	0	0	0	n	n	0	0	
TCI	single	n	0	n	0	0	n	n	0	0	

Table 5: IP and TCP reassembly policies of Debian 12. o means that oldest fragment data is prefered, n means that newest fragment data is prefered and \varnothing means that the OS ignores the overlap. Bold blue means that multiple and single strategies are reassembled differently. Green (resp. red) means the observed reassembly is consistent (resp. inconsistent) with latest related works⁶.

⁶ J. Novak. Target-based fragmentation reassembly. 2005, J. Novak and S. Sturges. Target-based tcp stream reassembly. 2007, Edoardo Di Paolo, Enrico Bassetti and Angelo Spognardi. "A New Model for Testing IPv6 Fragment Handling". in European Symposium on Research in Computer Security. Springer. 2023, pages 277–294.

Results IDS/OS consistency

	Rule	Testing				est ca					
Implementation			Overlapping relation								
	file	mode	F	Fi	S	Si	0	Oi	D	Di	Eq
Windows 10	-		ø	ø	ø	ø	ø	ø	ø	ø	ø
Suricata-windows	any		0	0	0	0	0	0	n	0	0
Snort-windows	any	multiple	0	0	0	0	0	0	n	0	0
Zeek			0	0	0	0	0	0	0	0	0
Windows 10			n	Ø	n	0	Ø	Ø	n	0	n
Suricata-windows	default		n	Ø	n	0	0	0	n	0	n
Suricata-windows	flow		Ø	Ø	Ø	Ø	0	0	Ø	Ø	Ø
Snort-windows	default	single	n	Ø	n	0	0	0	n	0	n
Snort-windows	flow		ø	ø	ø	ø	0		ø	ø	ø
Zeek	-		n	0	n	0	0	0	n	0	n
Debian 12	-		ø	ø	ø	ø	ø	ø	ø	ø	ø
Suricata-linux	anv		n	-	n	n	-	n	n	0	n
Sport-linux	any	multiple				n					n
Zeek	-										
Debian 12			n	ø	n	0	ø	ø	n	0	n
Suricata-linux	default	single		~			~	~			
Suricata-linux	flow		ä		ä	ø			ä	a	a
Sport-linux	default		- n	a	- n	~			- n	~	- n
Snort-linux	flow		ä	ã	ä	ø			ä	a	a
Zeek	iiow		n		n		۰		n	0	n
SunOS 5.11			n	0	0	0	0	0	n	0	
Suricata-solaris	any		n	0	0			0	n	0	0
		multiple		_	-	0	0	_		_	0
Snort-solaris Zeek	any		n	0	0	0	0	0	n	0	0
SunOS 5.11			0	o Ø	۰	0	۰	0	0	0	0
Suricata-solaris	- default		n		n	0	0	0	n	0	n
			n	0	n	•	0	0	n	0	n
Suricata-solaris	flow	single	Ø	0	ø	ø	0	0	ø	ø	Ø
Snort-solaris	default	Singic	n	Ø	n	0	0	0	n	0	n
Snort-solaris	flow		Ø	Ø	Ø	Ø	0	0	Ø	Ø	Ø
Zeek	-		n	0	n	0	0	0	n	0	n
FreeBSD 13.1	-		n	0	0	0	0	n	n	0	0
Suricata-bsd	any	multiple	n	0	0	0	0	n	n	0	0
Snort-bsd	any	muitiple	n	0	0	0	0	n	n	0	0
Zeek	-		0	0	٥	0	٥	0	0	0	0
FreeBSD 13.1	-		n	Ø	n	0	0	n	n	0	n
Suricata-bsd	default		n	0	n	0	0	0	n	0	n
Suricata-bsd	flow		Ø	0	Ø	Ø	0	0	Ø	Ø	Ø
Snort-bsd	default	single	n	Ø	n	0	0	n	n	0	n
Snort-bsd	flow		Ø	Ø	Ø	Ø	0	n	Ø	Ø	Ø
Zeek	-		n		n				n		n

Table 6: IDS IPv4 reassembly policy consistency with OSes.

Results

IDS evasion and insertion attack opportunities

Protocol	IDS	Reassembly inconsistencies	Number of OSes w/ possible attack type				
		inconsistencies	Evasion	Insertion			
	Suricata	8 (22%)	1/4	4/4			
IPv4	Snort	4 (11%)	0/4	2/4			
	Zeek	9 (25%)	4/4	1/4			
	Suricata	9 (25%)	0/4	4/4			
IPv6	Snort	6 (17%)	0/4	3/4			
	Zeek	28 (78%)	4/4	4/4			
	Suricata	1 (3%)	1/4	1/4			
TCP	Snort	1 (3%)	1/4	1/4			
	Zeek	11 (31%)	3/4	3/4			

Table 7: IDS inconsistencies with OS reassemblies and corresponding attack opportunities for the $\it single$ test mode.

Responsible disclosure

Every reassembly inconsistency is a possible security issue

- communication with IDS developers
- Suricata already fixed the some misassemblies

Conclusion and future works

Conclusion

- OS reassembly policies evolve
- ullet overlap-based attacks can still target IDSes o they must take into account OS reassembly evolutions

Future works

- Investigate n > 2 overlapping chunks
- Target more protocol implementations (e.g., offloaded stacks on NIC, embedded stacks)

Testing the reassembly consistency of IDS and OS in the presence of overlapping data "Journée thématique" GDR RSD, GPL and SI, Orléans

Thanks!

